Performance Testing of Thermal Interface Filler Materials in a Bolted Aluminum Interface Under Thermal/Vacuum Conditions Shaun Glasgow NASA/ Marshall Space Flight Center ED26/Thermal and Fluid Systems Group Huntsville, Alabama Ken Kittredge NASA/ Marshall Space Flight Center ED26/Thermal and Fluid Systems Group Huntsville, Alabama ### **ABSTRACT:** A thermal interface material is one of the many tools that are often used as part of the thermal control scheme for space-based applications. These materials are placed between, for example, an avionics box and a cold plate, in order to improve the conduction heat transfer so that proper temperatures can be maintained. Historically at Marshall Space Flight Center, CHO-THERM® 1671 has primarily been used for applications where an interface material was deemed necessary. However, there have been numerous alternatives come on the market in recent years. It was decided that a number of these materials should be tested against each other to see if there were better performing alternatives. The tests were done strictly to compare the thermal performance of the materials relative to each other under repeatable conditions and they do not take into consideration other design issues such as off-gassing, electrical conduction or isolation, etc. This paper details the materials tested, test apparatus, procedures, and results of these tests. ## 1.0 INTRODUCTION: Interface materials are usually compliant and act to fill in the microscopic gaps on a surface such that the area of the heat transfer path is maximized. Any flat surface has hills and valleys in it that are not visible to the naked eye. If two surfaces are placed in contact with each other, only the peaks of the hills will actually contact and create a heat transfer path, thus greatly reducing the effective amount of energy that can transfer between the two surfaces. Under atmospheric conditions, the gases present greatly aid in heat transfer. Interface materials are not usually required in this case and, in fact, can act as insulators. However, in the vacuum of space, there are no atmospheric gases to aid in heat transfer, and these interface materials are of great benefit. ## 2.0 MATERIALS TESTED: Twenty different materials tested are listed in table 2.1 with their respective test number, manufacturer, series, model, thickness, and thermal resistance (provided by the manufacturer). They can be broken down into the following categories: CHO-THERM and similar (tests 1-5), graphite (tests 6-10), foil (test 11), sandwich (tests 13-16), phase change material (PCM) (tests 17-20), and other (test 12). | Test# | Manufacturer | Series | Model | Туре | Thickness (in) | Vendor-Specified
Resistance
(°C-in²/W) | |-------|---------------------------------------|-------------|---------------|---------------------------|----------------|--| | 00 | - | - | • | Bare-No filler | - | • | | 01 | Chomerics | Cho-therm | 1671 | Silicone w/Boron-Nitride | 0.015 | 0.23 | | 02 | Chomerics | Cho-therm | T500 | Similar to Cho-Therm 1671 | 0.01 | 0.19 | | 03 | Thermagon | T-pli | 220 | Similar to Cho-Therm 1671 | 0.02 | 0.21 | | 04 | Thermagon | T-pli | 205 | Similar to Cho-Therm 1671 | 0.005 | 0.11 | | 05 | Bergquist | Sil-pad | K-10 | Similar to Cho-Therm 1671 | 0.006 | 0.41 | | 06 | Graftech | eGraf | 705 | Graphite | 0.005 | 0.03 | | 07 | Graftech | eGraf | 1210 | Graphite | 0.01 | 0.03 | | 08 | Graftech | eGraf | 1220 | Graphite | 0.02 | 0.07 | | 09 | Thermagon | T-gon | 805 | Graphite | 0.005 | 0.07 | | 10 | Thermagon | T-gon | 820 | Graphite | 0.02 | 0.17 | | 11 | Indium Corp | Indium foil | - | Foil | 0.015 | 0.007 | | 12 | Energy
Sciences
Laboratory Inc. | Vel-Therm | A20B-
G251 | Other | 0.02 | - | | 13 | Bergquist | Q-pad | = | Sandwich | 0.006 | 0.22 | | 14 | Bergquist | Q-pad | 3 | Sandwich | 0.005 | 0.35 | | 15 | | Micro-faze | A6 | Sandwich | 0.006 | 0.02 | | 16 | AOS Thermal
Compounds | Micro-faze | К | Sandwich | 0.006 | 0.03 | | 17 | Thermagon | T-pcm | HP105 | РСМ | 0.005 | 0.015 | | 18 | Thermagon | T-mate | 2910C | РСМ | 0.01 | 0.09 | | 19 | Thermagon | T-mate | 2920 | РСМ | 0.02 | 0.27 | | 20 | Bergquist | Hi-flow | 625 | PCM | 0.005 | 0.71 | Table 2.1 – Thermal filler materials tested ## **3.0 TEST APPARATUS:** The test fixture consisted of three 6-in square aluminum plates bolted to a liquid cooled coldplate mounted in a small vacuum chamber. The filler material to be tested was placed between the two plates nearest the coldplate. Each of these plates included four imbedded resistance temperature devices (Minco part # S7798PD), which were connected to an Agilent Technologies 34970A data acquisition unit for monitoring and recording temperature data. A Minco kapton-insulated thermo-foil heater resided in the interface between the two outermost plates. The heater was wired to a calibrated Agilent 6675A power supply to provide the constant voltage current across the 15.8 Ω heater. The test fixture was mounted to the coldplate with six No. 10 machine screws, which also provided the contact pressure across the interface filler. The coldplate was cooled via a Neslab CFT-150 chiller utilizing a water-ethylene-glycol coolant mixture. The contact pressure imposed on the interface material by this setup can be calculated by the equation: $$P = \frac{T \times N}{f \times d \times A}$$ Where: P = Contact Pressure (psi) T = Bolt Torque (in-lb) N = Number of Bolts f = friction factor (0.2 for unlubricated bolts) d = bolt diameter (in) A = contact area (in²) Based on this equation the contact pressure for the 10, 25, and 40 in.-lb. cases is 44, 110, and 176 psi, respectively. The setup is depicted in Figure 3.1. Figure 3.1 – Test apparatus mounted to coldplate Following initial checkout tests, interface material was placed between the test apparatus and the coldplate to improve the heat transfer to the coldplate. Thermal interface material was also placed between the two outermost aluminum plates along with the heater to help fill surface irregularities and provide more uniform contact between the heater and the plates. Once the test fixture was assembled and mounted to the coldplate, a multi-layer insulation (MLI) blanket was placed over it to reduce radiation heat transfer from the test fixture to the chamber walls. Photographs of the assembled test apparatus are shown in Figures 3.2 and 3.3. Figure 3.2 – Test apparatus with MLI $Figure \ 3.3-Vacuum\ chamber,\ data\ acquisition,\ and\ cooling\ cart$ # **4.0 TEST PROCEDURES:** The approach used in testing was to measure the average temperatures of the two plates on either side of the interface material and use the ΔT across the interface as a comparison of performance of the materials. A constant (+/-1°F) bottom plate temperature was maintained between each test and the input voltage applied to the heater was maintained for each test. By using this method, testing was much simpler than trying to account for all energy losses or gains within the system, and it still gave valid results for comparison purposes. Prior to any testing, the entire assembly was placed in the vacuum chamber and baked out for two hours at a temperature above $176^{\circ}F$. After this was complete, the chamber was repressurized and the bolts were retorqued. All testing was done at less than 1.0×10^{-4} torr. A baseline test - no interface material (bare) – plus a test of each material was performed at torque values of 10 and 25 in-lb. A 40 in-lb test was also done for Vel-Therm[®]. The bottom plate temperature and heater voltage were set for each material's test from those established in the baseline test. The settings used were arbitrary, but with the goal of an $\sim 90^{\circ}$ F ΔT . The settings ended up being $\sim 80^{\circ}$ F for the bottom plate and 70V for the heater voltage, or ~ 300 W of power. During the early stages of testing, one of the CHO-THERM-like materials (T-pli 220) proved to perform far better than expected and only produced a ΔT of $\sim 6^{\circ}F$. Based on this result and the fact that a number of the materials that had yet to be tested had far lower vendor-supplied resistance values, it was decided that a higher power level was needed to provide better resolution in the results. Consequently, two subsets of results were obtained. Results from the first subset consisted of the baseline (bare) test and all the CHO-THERM-like materials tested using the previously mentioned settings. The second subset of results were from re-testing CHO-THERM 1671 and T-pli 220 at a higher input power and applying those settings to the remaining materials. The settings for the second subset were a bottom plate temperature of $\sim 86^{\circ}F$ and an input voltage of 95V, or ~ 570 W of power. ### 5.0 RESULTS: The results for the CHO-THERM-like materials are shown, in order from least ΔT to highest, in Tables 5.1 (10 in-lb) and 5.2 (25 in-lb). It can be seen from the tables that additional torque provides better results, which is expected. It also shows that none of these particular materials are more sensitive to torque; i.e., the order of the results does not change between the two tables. | Test # | | Torque
(in-lb) | Top Avg.
(°F) | Bot. Avg.
(°F) | Delta T
(°F) | |--------|----------------|-------------------|------------------|-------------------|-----------------| | 3 | T-pli 220 | 10 | 84.7 | 78.6 | 6.1 | | 4 | T-pli 205 | 10 | 91.3 | 78.8 | 12.5 | | 5 | Sil-pad K-10 | 10 | 101.4 | 79.6 | 21.8 | | 1 | Cho-therm 1671 | 10 | 112.6 | 79.3 | 33.3 | | 2 | Cho-therm T500 | 10 | 117.0 | 80.4 | 36.6 | | 0 | Bare | 10 | 166.8 | 79.6 | 87.2 | Table 5.1 - CHO-THERM-like materials at 10 in-lb | Test# | Material | | Top Avg.
(°F) | Bot. Avg.
(°F) | Delta T
(°F) | |-------|----------------|----|------------------|-------------------|-----------------| | 3 | T-pli 220 | 25 | 84.7 | 79.8 | 4.9 | | 4 | T-pli 205 | 25 | 88.4 | 79.6 | 8.8 | | 5 | Sil-pad K-10 | 25 | 96.3 | 78.7 | 17.6 | | 1 | Cho-therm 1671 | 25 | 105.4 | 79.0 | 26.4 | | 2 | Cho-therm T500 | 25 | 106.7 | 78.5 | 28.2 | | 0 | Bare | 25 | 143.6 | 79.9 | 63.7 | Table 5.2 - CHO-THERM-like materials at 25 in-lb Tables 5.3 (10 in-lb) and 5.4 (25 in-lb) show the results for the rest of the materials tested at the higher power levels. The same general trends can be seen for these materials. Two pairs of materials do swap places with the higher torque value but the Δ Ts show that they are very close together in both cases. | Test # | Material | Torque
(in-lb) | Top Avg.
(°F) | Bot. Avg.
(°F) | Delta T
(°F) | |--------|----------------|-------------------|------------------|-------------------|-----------------| | 17 | T-pcm HP105 | 10 | 96.9 | 90.2 | 6.7 | | 12 | Vel-Therm | 10 | 93.3 | 86.3 | 7.0 | | 3-V | T-pli 220 | 10 | 95.3 | 85.6 | 9.7 | | 20 | Hi-flow 625 | 10 | 97.2 | 84.1 | 13.1 | | 19 | T-mate 2920 | 10 | 100.3 | 84.5 | 15.8 | | 8 | eGraf 1220 | 10 | 106.4 | 85.7 | 20.7 | | 13 | Q-pad II | 10 | 108.0 | 86.7 | 21.3 | | 7 | eGraf 1210 | 10 | 108.6 | 85.9 | 22.7 | | 18 | T-mate 2910C | 10 | 108.5 | 85.6 | 22.9 | | 11 | Indium | 10 | 117.2 | 86.4 | 30.8 | | 10 | T-gon 820 | 10 | 118.5 | 85.8 | 32.7 | | 15 | Micro-faze A6 | 10 | 119.0 | 85.8 | 33.2 | | 9 | T-gon 805 | 10 | 120.7 | 86.4 | 34.3 | | 6 | eGraf 705 | 10 | 119.5 | 84.7 | 34.8 | | 14 | Q-pad 3 | 10 | 121.9 | 87.0 | 34.9 | | 16 | Micro-faze K6 | 10 | 138.2 | 83.7 | 54.5 | | 1-V | Cho-therm 1671 | 10 | 140.6 | 85.7 | 54.9 | Table 5.3 – All other materials at 10 in-lb | Test # | Material | Torque
(in-lb) | | Bot. Avg.
(°F) | Delta T
(°F) | |--------|-----------------------|-------------------|-------|-------------------|-----------------| | 17 | 17 T-pcm HP105 | | 91.9 | 85.4 | 6.5 | | 12 | Vel-Therm | 25 | 91.1 | 84.4 | 6.7 | | 3-V | T-pli 220 | 25 | 93.3 | 85.5 | 7.8 | | 20 | Hi-flow 625 | 25 | 99.0 | 86.0 | 13.0 | | 19 | T-mate 2920 | 25 | 101.5 | 85.9 | 15.6 | | 13 | Q-pad II | 25 | 103.1 | 85.6 | 17.5 | | 8 | eGraf 1220 | 25 | 103.0 | 85.3 | 17.7 | | 7 | eGraf 1210 | 25 | 106.3 | 86.1 | 20.2 | | 18 | T-mate 2910C | 25 | 106.5 | 85.4 | 21.1 | | 11 | Indium | 25 | 107.0 | 85.1 | 21.9 | | 10 | T-gon 820 | 25 | 109.1 | 85.1 | 24.0 | | 15 | Micro-faze A6 | 25 | 109.9 | 85.4 | 24.5 | | 9 | T-gon 805 | 25 | 112.6 | 86.5 | 26.1 | | 14 | Q-pad 3 | 25 | 114.6 | 86.1 | 28.5 | | 6 | eGraf 705 | 25 | 115.8 | 86.4 | 29.4 | | 16 | Micro-faze K6 | 25 | 125.1 | 86.9 | 38.2 | | 1-V | Cho-therm 1671 | 25 | 128.9 | 86.7 | 42.2 | Table 5.4 – All other materials at 25 in-lb Table 5.5 shows the results for Vel-Therm for all three torque cases. It was expected that with higher torque, the Vel-Therm would not perform as well. This is because the material consists of carbon fibers, which tend to get crushed at higher torque values, and the fibers are not effective at moving energy when this happens. As can be seen from the table, it does perform slightly better at 25 in-lb, but it loses performance at the 40 in-lb level. | Test # | | • | Top Avg.
(°F) | Bot. Avg.
(°F) | Delta T
(°F) | |--------|-----------|----|------------------|-------------------|-----------------| | 12 | Vel-Therm | 10 | 93.3 | 86.3 | 7.0 | | 12 | Vel-Therm | 25 | 91.1 | 84.4 | 6.7 | | 12 | Vel-Therm | 40 | 91.5 | 84.2 | 7.3 | Table 5.5 - Vel-Therm at 10, 25, and 40 in-lb #### **6.0 CONCLUSIONS:** The results show that there are many materials currently available that perform quite well. Cost is not a big consideration between any of them with the exception of Indium[®] and Vel-Therm, which are much more expensive than the others. There are many design considerations that come into play when trying to choose a suitable candidate, but these data should help with the thermal performance aspect of that decision. From a mainly thermal perspective, the following conclusions can be made: - CHO-THERM 1671 is much better than a bare interface but it is one of the poorest performers in the group tested. - There is little correlation between the manufacturer's thermal resistance data and the results from these tests, indicating that there is more to interface performance than just material properties. - Graphites tended to improve with thickness. This was unexpected but may be pressure related if the graphite fillers are not as compliant as the silicone-based fillers. - Indium was disappointing for the price. It may need higher pressures to conform to minor surface irregularities. - There was little difference in the top two performers except price: Vel-Therm, \$1000 and HP105, \$16. The extra \$984 buys a somewhat easier removal process; also, note that since HP105 is a PCM, it may have off-gassing problems. - T-pli 220 had the best combination of thermal performance, price, and ease of use. Performance is consistent with the top two, but it is a CHO-THERM-like filler. The only category where it does not outperform 1671 is in ease of reuse, which, at \$38 a sheet, should not be an issue.